1,820 research outputs found

    Lower Extremity Stiffness in Collegiate Distance Runners Pre- and Post-Competition

    Get PDF
    Previous evidence has suggested that there is a relationship between leg stiffness and improved running performance. The purpose of this investigation was to determine how leg stiffness of runners was influenced in the 24 and 48 hour period following a cross country race. Twenty-two collegiate cross-country runners (13 males, 9 females, 19.5 ± 1.4 yr) were recruited and participated in the study. Leg stiffness was assessed 24 hours before and after a race as well as 48 hours post-race. Three jumping protocols were conducted: 1) a static jump, 2) a countermovement jump, and 3) a vertical hopping test. Two embedded force plates (1000 Hz) were utilized to measure ground reaction forces for each test and a metronome was utilized to maintain hopping frequency (2.2 Hz). A significant main effect was found for a static jump, a countermovement jump and leg stiffness. Leg stiffness was significantly reduced 24 hours post-race (pre-race 36.84 kN·m-1, 24h post 33.11 kN·m-1, p \u3c 0.05), but not 48 hours post-race (36.30 kN·m-1). No significant differences were found in post-hoc analysis for the squat jump, countermovement jump height and the eccentric utilization ratio. Following a cross-country race, leg stiffness significantly declined in a group of collegiate runners in the immediate 24 hours post-race, but returned to baseline 48 hours post-race. Sport scientists and running coaches may be able to monitor leg stiffness as a metric to properly prescribe training regiments

    Reliability of Smartphone Inclinometry to Measure Upper Cervical Range of Motion.

    Get PDF
    Context: Assessment of upper cervical range of motion (UCROM) and mobility is commonly performed in the clinical setting for patients suffering from headache, neck pain and vestibular dysfunction. Reliable and reproducible measurement of this motion is often difficult or too expensive to perform in the clinical setting. Smartphone applications, utilizing the device\u27s internal gyroscope, offer an easy and inexpensive means of measuring UCROM, but their reliability has not been reported in the literature. Objective: Assess the reliability of an inclinometer application, installed on two different devices (iPhone6 (IP), Andriod (AN)), to measure UCROM in a healthy population. Design: Two examiners assessed passive UCROM. Each examiner was assigned to a specific smartphone and a repeated measures design consisting of three trials for each examiner-phone was performed. The order of testing was randomized and the examiners were blinded to UCROM measures. Setting: Laboratory Participants: 38 subjects (19F, 19M; 23.8±1.2 yrs) without pain or injury to the neck and spine for at least 3 months. Intervention: Each examiner passively flexed the head fully and then rotated the head fully in one direction then in another. Peak rotation measures were recorded from each smartphone. Three trials were performed for each phone with a 2-minute break between examiners/phones. Main Outcome Measures: Intraclass Correlation Coefficient (ICC) using a two way mixed, absolute agreement model were obtained (1) between each examiner-phone and (2) within each examiner-phone for the measurements in each rotation direction. Results: Inter-phone/examiner reliability comparing average peak and total UCROM for each device were excellent (0.87, 0.81). Intra-phone/examiner reliability, determined across three trials, was also excellent (AN Right Rot. = 0.91, AN Left Rot. 0.96, IP Right Rot. = 0.98, IP Left = 0.95 Rot.). Conclusion: UCROM can be reliably measured using a smartphone inclinometer application

    Effect of GPS Feedback on Lactate Threshold Pacing in Intercollegiate Distance Runners

    Get PDF
    International Journal of Exercise Science 6(1) : 74-80, 2013. In their roles as coaches, the authors have observed that first-year collegiate distance runners often have difficulty running at prescribed training paces during lactate threshold (LT) training runs. Previous research has validated the accuracy of global positioning system (GPS) devices in providing distance and velocity feedback during running. The purpose of this study was to determine the efficacy of using the Garmin Forerunner 305 GPS watch (Garmin) to reduce deviations from prescribed training paces during LT runs with first-year collegiate runners. Participants were two groups of varsity cross country runners who completed a three-week LT training intervention either with (n = 5) or without (n = 6) a Garmin device. Prescribed training paces were based off an initial time-trial. In both the pre- and post-test runs, in which all runners ran without a Garmin device, differences were calculated between the prescribed pace and actual pace. The comparisons revealed a significant difference between the training groups in the post-test. Those runners who trained with the Garmin device had a significant decrease in pacing variability. This suggests that GPS pacing feedback appears to be an effective tool at improving LT pacing in first-year collegiate distance runners

    Inter-Session Repeatability of Marker-Less Motion Capture of Treadmill Running Gait

    Get PDF
    Twenty-one experienced runners completed three treadmill running sessions on different days. Each session consisted of three consecutive 2 min trials at self-selected speeds (RPE = 3, 5, and 7). An eight-camera marker-less motion capture system and instrumented pressure treadmill (TM) collected data over the final ~25 s at each speed. Lower extremity joint angles (ankle, knee, and hip) and segmental angles (pelvis and trunk) were computed for each trial with foot contact and toe off being kinematically determined. Spatiotemporal metrics (ground contact time, step length, and cadence) were measured via TM and compared to their kinematically derived counterparts. All spatiotemporal metrics demonstrated excellent agreement (ICCs \u3e 0.98). Both intra-trial and inter-session variability, averaged across the entire running cycle, for all lower extremity joint angles in all planes were low (intra-trial: sagittal = 2.0°, frontal = 1.2°, and transverse = 1.9°; inter-session: sagittal = 1.4°, frontal = 0.8°, and transverse = 1.3°). Discrete measures of lower extremity joint and segmental angles were evaluated for inter-session reliability at foot contact, toe off, and peak value during the stance phase. On average, discrete measures demonstrated good reliability (ICCsagittal = 0.85, ICCfrontal = 0.83, and ICCtransverse = 0.77) with average standard error of measurement \u3c 1°. Marker-less motion capture reliably measured treadmill running kinematics in a group of runners demonstrating heterogenous foot strike patterns (13 rearfoot strike and 8 non-rearfoot strike) across a range of speeds (2.67–4.44 m/s)

    Gait Analysis of Teenagers and Young Adults Diagnosed with Autism & Severe Verbal Communication Disorders

    Get PDF
    Both movement differences and disorders are common within autism spectrum disorders (ASD). These differences have wide and heterogeneous variability among different ages and sub-groups all diagnosed with ASD. Gait was studied in a more homogeneously identified group of nine teenagers and young adults who scored as “severe” in both measures of verbal communication and overall rating of Autism on the Childhood Autism Rating Scales (CARS). The ASD individuals were compared to a group of typically developing university undergraduates of similar ages. All participants walked a distance of 6-meters across a GAITRite (GR) electronic walkway for six trials. The ASD and comparison groups differed widely on many spatiotemporal aspects of gait including: step and stride length, foot positioning, cadence, velocity, step time, gait cycle time, swing time, stance time, and single and double support time. Moreover, the two groups differed in the percentage of the total gait cycle in each of these phases. The qualitative rating of “Body Use” on the CARS also indicated severe levels of unusual body movement for all of the ASD participants. These findings demonstrate that older teens and young adults with “severe” forms of Verbal Communication Impairments and Autism differ widely in their gait from typically developing individuals. The differences found in the current investigation are far more pronounced compared to previous findings with younger and/or less severely involved individuals diagnosed with ASD as compared to typically developing controls. As such, these data may be a useful anchor-point in understanding the trajectory of development of gait specifically and motor functions generally.

    Two-Legged Hopping in Autism Spectrum Disorders

    Get PDF
    Sensory processing deficits are common within autism spectrum disorders (ASD). Deficits have a heterogeneous dispersion across the spectrum and multimodal processing tasks are thought to magnify integration difficulties. Two-legged hopping in place in sync with an auditory cue (2.3, 3.0 Hz) was studied in a group of six individuals with expressive language impaired ASD (ELI-ASD) and an age-matched control group. Vertical ground reaction force data were collected and discrete Fourier transforms were utilized to determine dominant hopping cadence. Effective leg stiffness was computed through a mass-spring model representation. The ELI-ASD group were unsuccessful in matching their hopping cadence (2.21 ± 0.30 hops·s−1, 2.35 ± 0.41 hops·s−1) to either auditory cue with greater deviations at the 3.0 Hz cue. In contrast, the control group was able to match hopping cadence (2.35 ± 0.06 hops·s−1, 3.02 ± 0.10 hops·s−1) to either cue via an adjustment of effective leg stiffness. The ELI-ASD group demonstrated a varied response with an interquartile range (IQR) in excess of 0.5 hops·s−1 as compared to the control group with an IQR \u3c 0.03 hops·s−1. Several sensorimotor mechanisms could explain the inability of participants with ELI-ASD to modulate motor output to match an external auditory cue. These results suggest that a multimodal gross motor task can (1) discriminate performance among a group of individuals with severe autism, and (2) could be a useful quantitative tool for evaluating motor performance in individuals with ASD individuals

    Acute Effects of Ballistic and Non-ballistic Bench Press on Plyometric Push-up Performance

    Get PDF
    The purpose of this study was to examine the effects of a ballistic or non-ballistic concentric-only bench press (COBP) on subsequent plyometric push-up performance. Fourteen resistance trained men completed two separate one-repetition-maximum (1RM) testing sessions followed by three randomized experimental explosive push-up sessions. These sessions combined a heavy concentric bench press with plyometric push-ups. Using a series of 3 × 10 (condition × time) repeated measures ANOVA, comparisons were made between the effects of ballistic and non-ballistic bench presses on performance of plyometric push-ups to investigate push-up performance variables. Compared with the control condition, both ballistic and non-ballistic bench presses produced lower net impulse and take-off velocity data. No differences were found between ballistic and non-ballistic conditions comparing net impulse and take-off velocity. We conclude that the magnitude of loading used in the current investigation may have caused acute fatigue which led to lower push-up performance characteristics. This information can be used to alter loading protocols when designing complexes for the upper body, combining the bench press and plyometric push-ups

    Targeted metaproteomics : detecting sub-species level protein biomarkers in the vast oceanic microbial metaproteome

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Proteomics 15 (2015): 3521-3531, doi:10.1002/pmic.201400630.Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8+1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13+15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ~4x107, 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples.This research was funded by the Gordon and Betty Moore Foundation and the US National Science Foundation under grant numbers 3782, 3934, OCE-1260233, OCE-1233261, OCE-1220484, OCE-1333212 and OCE-1155566, and the Center for Microbial Oceanography Research and Education (C-MORE).2016-06-1

    X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    Get PDF
    The infrared-luminous galaxy NGC3256 is a classic example of a merger induced nuclear starburst system. We find here that it is the most X-ray luminous star-forming galaxy yet detected (~10^42 ergs/s). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a "superwind" which accounts for ~20% of the observed soft (kT~0.3 keV) X-ray emission. Our model for the broadband X-ray emission of NGC3256 contains two additional components: a warm thermal plasma (kT~0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of ~0.7. We find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse-Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift.Comment: 31 pages (tex, epsf), 8 figures (postscript files), accepted for publication in Part 1 of The Astrophysical Journa
    corecore